Presented by Richard A. Painter, P.E. Painter Engineering, Inc.

painter@ieee.org http://painterengineering.com

© Copyright 1998 - 2005 Painter Engineering, Inc. All Rights Reserved.

- What is the Network Time Protocol (NTP)?
 - Used to synchronize computer clocks on the INTERNET and intranets
 - Has Top-level computers called Stratum 1 Primary Time Servers
 - Relies on multiple time sources (NIST, GPS, etc)
 - Transported via an INTERNET Protocol Packet
 - Uses client software to set the computer's local clock
 - Employs algorithms to account for multiple sources and network delays to increase accuracy and reliability

- Who uses NTP?
 - Government, Military, National Labs
 - Universities
 - INTERNET Service Providers (ISP)
 - Network Providers
 - Industry
 - Computers on local networks
 - Personal Computer Users

- INTERNET Control Message Protocol (ICMP)- RFC-792
- Daytime Protocol- RFC-867
- Time Protocol- RFC-868
- Network Time Protocol Version 3 (NTP)- RFC-1305
- Simple Network Time Protocol (SNTP)- RFC-1769

- INTERNET Control Message Protocol (ICMP)- RFC-792
 - » September 1981
 - » 32-bit unsigned milliseconds since midnight UTC
 - » ICMP Message type 13, 14
- Daytime Protocol- RFC-867
- Time Protocol- RFC-868
- Network Time Protocol Version 3 (NTP)- RFC-1305
- Simple Network Time Protocol (SNTP)- RFC-1769

- What are the INTERNET Time Protocols?
 - INTERNET Control Message Protocol (ICMP)- RFC-792
 - Daytime Protocol- RFC-867
 - » May 1983
 - » ASCII string returned with 25 chars [Mon Apr 20 18:11:06 1998\n]
 - » TCP|UDP Port 13
 - Time Protocol- RFC-868
 - Network Time Protocol Version 3 (NTP)- RFC-1305
 - Simple Network Time Protocol (SNTP)- RFC-1769

- INTERNET Control Message Protocol (ICMP)- RFC-792
- Daytime Protocol- RFC-867
- Time Protocol- RFC-868
 - » May 1983
 - » 32-bit unsigned seconds since 00:00 1 Jan 1900 GMT
 - » TCP|UDP Port 37
- Network Time Protocol Version 3 (NTP)- RFC-1305
- Simple Network Time Protocol (SNTP)- RFC-1769

- INTERNET Control Message Protocol (ICMP)- RFC-792
- Daytime Protocol- RFC-867
- Time Protocol- RFC-868
- Network Time Protocol Version 3 (NTP)- RFC-1305
 - » March 1992
 - » 32-bit unsigned seconds, 32-bit unsigned fraction of seconds since 00:00 0 Jan 1900 UTC
 - » TCP|UDP Port 123
- Simple Network Time Protocol (SNTP)- RFC-1769

- INTERNET Control Message Protocol (ICMP)- RFC-792
- Daytime Protocol- RFC-867
- Time Protocol- RFC-868
- Network Time Protocol Version 3 (NTP)- RFC-1305
- Simple Network Time Protocol (SNTP)- RFC-1769
 - » March 1992
 - » 32-bit unsigned seconds, 32-bit unsigned fraction of seconds since 00:00 0 Jan 1900 UTC
 - » TCP|UDP Port 123

• NTP Version 3 Packet

- 4 64-bit timestamps
- 32-bit seconds
- 32-bit fraction of seconds
- Big-Endian layout
- Transported in UDP or TCP
- ERA length approx. 136 years
- EPOCH started 00:00 0 Jan 1900 UTC

• NTP Timestamp Analysis

- 32- bit seconds (unsigned)
 - » range of 0 to 4294967295 seconds, inclusive
 - » 136 years, 36 days, 6 hours, 28 minutes, 15 seconds
- Based on UTC which periodically adjusts for leap seconds
- Precise EPOCH date and time is not predictable this far in advance
- Next EPOCH is in 2036
 - » February 5th (approx.)
 - » Not on a nice date and time
- EPOCH handling is in consumers' hands

• NTP Client Computer Software

- No EPOCH support
- What happens in 2036?

• UNIX Issues

- Has its own date problem in 2038
- Most NTP servers are UNIX based

NTP 2000 Issues

- Packet can handle the time (in seconds)
- Primary Time Servers must collect time data from multiple sources and create and NTP packet
 - » Source could provide time and date with a bad date
 - » Primary server could convert the date and time wrong and create incorrect NTP packets
- NTP is widely distributed across the INTERNET
 - » Incorrect time from Primaries could propagate like a virus

• NTP 2036 Issues

- Without both Primary Server and Client software changes the dates are likely to become incorrect
- Currently no EPOCH management mechanisms
- Human intervention is likely on every computer unless sophisticated EPOCH handling is employed
- A vastly greater number of computers will be invloved compared to those with 2000 date issues today

- Conclusions
 - NTP packet will likely be fine for 2000
 - Some Servers and Clients may have date problems in 2000
 - Serious problems will definately happen in 2036 without significant intervention even today
 - Additional problems may happen in 2038 on UNIX systems
 - Solving both today while fixing 2000 problems will prevent both NTP and UNIX from failing 30 years hence
 - Fixing them now will be significantly more cost effective